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Abstract—DWT (Discrete Wavelet Transform) is used for image 
denoising which is very powerful tool. But it suffers from shift 
sensitivity, absence of phase information, and poor directionality. To 
remove out these limitations, many researchers developed extensions 
to the standard DWT such as WP (Wavelet Packet Transform), and 
SWT (Stationary Wavelet Transform). These extensions are highly 
redundant and computationally intensive. Complex Wavelet 
Transform (CWT) is also an impressive option, complex-valued 
extension to the standard DWT. There are various applications of 
Redundant CWT (RCWT) in an image processing such as Denoising, 
Motion estimation, Image fusion, Edge detection, and Texture 
analysis. In this work, the focused application is the image denoising 
using two innovative techniques and the images are considered which 
are corrupted by a random noise. 
 In this paper, first two sections explain about introduction to the 
topic and regarding wavelet transform domain. Third section gives 
an idea about basics concepts of the system. Forth section illustrates 
the proposed systems. Last section gives results and discussion. Here 
promising results are compared with DWT extensions namely, Dual-
Tree Complex DWT (DTCWT) and Double-Density Dual-Tree 
Complex DWT (DDDTCWT). 
 
Keywords: CWT, DWT, Dual-Tree Complex DWT, Double-Density 
Dual-Tree Complex DWT. 

1. INTRODUCTION 

Image denoising is a technique which removes out noise 
which is added in the original image. Noise reduction is an 
important part of image processing systems. An image is 
always affected by noise. Image quality may get disturbed 
while capturing, processing and storing the image. Noise is 
nothing but the real world signals and which are not part of the 
original signal. In images, noise suppression is a particularly 
delicate task. In this task, noise reduction and the preservation 
of actual image features are the main focusing parts. 

The wavelet transform provides a multi resolution 
representation using a set of analyzing functions that are 
dilations and translations of a few functions (wavelets). It 
overcomes some of the limitations of the Fourier transform 

with its ability to represent a function simultaneously in the 
frequency and time domains using a single prototype function 
(or wavelet) and its scales and shifts [2]. 

The wavelet transform comes in several forms. The critically-
sampled form of the wavelet transforms provides the most 
compact representation; however, it has several limitations. 

It lacks the shift-invariance property, and in multiple 
dimensions it does a poor job of distinguishing orientations, 
which is important in image processing. For some 
applications, improvements can be obtained by using an 
expansive wavelet transform in place of a critically-sampled 
one [1]. A denoising method is used to improve the quality of 
image corrupted by a lot of noise due to the undesired 
conditions for image acquisition. The image quality is 
measured by the peak signal-to-noise ratio (PSNR) or signal-
to noise ratio (SNR). Traditionally, this is achieved by linear 
processing such as Wiener filtering [3]. Recently introduced 
Dual-Tree Complex DWT and Double-Density Dual-Tree 
Complex DWT can give best results in image denoising 
applications. 

2. WAVELET TRANSFORM DOMAIN 

A Fourier Transform (FT) is only able to retrieve the global 
frequency content of a signal, the time information is lost. 

A multi-resolution analysis becomes possible by using wavelet 
analysis. The Wavelet Transform (WT) retrieves frequency 
and time content of a signal. The basic types of wavelet 
transform are namely, i) Continuous Wavelet Transform 
(CoWT) ii) Discrete Wavelet Transform (DWT) iii) Complex 
Wavelet Transform (CWT). A multi-resolution analysis is not 
possible with Fourier Transform (FT) and Short Time Fourier 
Transform (STFT) and hence there is a restriction to apply 
these tools in image processing systems; particularly in image 
denoising applications. The multi-resolution analysis becomes 
possible by using wavelet analysis. A Continuous Wavelet 
Transform (CoWT) is calculated analogous to the Fourier 
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transform (FT), by the convolution between the signal and 
analysis function. The Discrete Wavelet Transform uses filter 
banks to perform the wavelet analysis. 

2.1 Complex wavelet transform 

This is a newly introduced technique of DWT. Orthogonal 
wavelet decompositions, based on separable, multirate 
filtering systems have been widely used in image and signal 
processing, largely for data compression. Kingsbury 
introduced a very elegant computational structure, the Dual-
Tree complex wavelet transform [5], which displays near-shift 
invariant properties. Other constructions can be found such as 
in [6]. Kingsbury [3] pointed out the problems of Mallat-type 
algorithms. These algorithms have the lack of shift invariance. 

Complex wavelets have not been used widely in image 
processing due to the difficulty in designing complex filters 
which satisfy a perfect reconstruction property. To overcome 
this, Kingsbury proposed a Dual-Tree implementation of the 
CWT (DT CWT) [7], which uses two trees of real filters to 
generate the real and imaginary parts of the wavelet 
coefficients separately. The DWT suffers from the following 
two problems. 

1. Lack of shift invariance - this results from the down 
sampling operation at each level. When the input signal is 
shifted slightly, the amplitude of the wavelet coefficients 
varies so much. 

2. Lack of directional selectivity - as the DWT filters are 
real and separable the DWT cannot distinguish between 
the opposing diagonal directions. 

The first problem can be avoided if the filter outputs from 
each level are not down sampled but this increases the 
computational costs significantly and the resulting 
undecimated wavelet transform still cannot distinguish 
between opposing diagonals since the transform is still 
separable. 

To distinguish opposing diagonals with separable filters the 
filter frequency responses are required to be asymmetric for 
positive and negative frequencies. A good way to achieve this 
is to use complex wavelet filters which can be made to 
suppress negative frequency components. The Complex DWT 
has improved shift-invariance and directional selectivity than 
the separable DWT [6]-[7]. 

3. BASIC CONCEPTS OF THE SYSTEM 

A filter bank plays an important role in wavelet transform 
applications. It consists of two banks namely, analysis filter 
bank and synthesis filter bank. The one dimensional filter 

bank is constructed with analysis and synthesis filter bank 
which is shown in Fig. 1. 

The analysis filter bank decomposes the input signal x(n) into 
two sub band signals, c(n) and d(n). The signal c(n) represents 
the low frequency part of x(n), while the signal d(n) represents 
the high frequency part of x(n). It uses filter banks to perform 
the wavelet analysis. The DWT decomposes the signal into 
wavelet coefficients from which the original signal can be 
reconstructed again. The wavelet coefficients represent the 
signal in various frequency bands. The coefficients can be 
processed in several ways, giving the DWT attractive 
properties over linear filtering. 

3.1 A block schematic of wavelet based image denoising 
technique 

 

Fig. 2: Design implementation of Dual-Tree Complex DWT 

Image denoising means usually compute the soft threshold in 
such a way that information present in image is preserved. A 
block schematic of Wavelet based image denoising technique 
is shown in Fig. 2. 

Here the basic steps of wavelet based image denoising are 
given below. 

 Decompose corrupted image by noise using wavelet 
transform.  

 Compute threshold in wavelet domain and apply to noisy 
coefficients.  

 Apply inverse wavelet transform to reconstruct image. 

3.2 Basic differences between the two DWT extensions 

Fig. 1: One dimensional filter bank 
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Fig. 3: A block schematic of wavelet based  
image denoising technique 

The basic differences between the Dual-Tree DWT and 
Double-Density DWT are given below. 

 The Dual-Tree and Double-Density DWTs are 
implemented with totally different filter bank structures. 

 The Dual-Tree DWT can be interpreted as a complex-
valued wavelet transform which is useful for signal 
modeling and denoising (the Double-Density DWT 
cannot be interpreted as such). 

 For the Dual-Tree DWT there are fewer degrees of 
freedom for design, while for the Double-Density DWT 
there are more degrees of freedom for design. 

 The Dual-Tree DWT can be used to implement two-
dimensional transforms with directional wavelets, which 
is highly desirable for image processing [8]. 

4. PROPOSED SYSTEM 

By introducing Complex wavelet transforms (CWT) concept, 
we can achieve Dual-Tree Complex DWT system. Also 
combining the Double-Density DWT and Dual-Tree Complex 
DWT, we can achieve the Double-Density Dual-Tree 
Complex DWT system. Complex wavelet transforms (CWT) 
use complex-valued filtering (analytic filter) that decomposes 
the real/complex signals into real and imaginary parts in 
transform domain. The real and imaginary coefficients are 
used to compute amplitude and phase information. 

5. RESULTS AND DISCUSSION 

The implementation of this work has performed in MATLAB 
software. Table 1 illustrates the result of MRI brain images for 
the RMS error with varying threshold (T) for DTDWT and 
Table 2 illustrates the results of DDDTDWT. Here as the 
noise increases DDDTCDWT gives better results than 
DTCDWT. 

Figure 8 and figure 12 are the original image corrupted by 
noise. Figure 9 and figure 10 are the output of denoised image 
by separable DWT. Figure 10 gives the output of denoised 
image by real DTDWT. Fig 11 gives output of denoised image 
by complex DTDWT. 

Fig 14 shows the output of denoised image by real 
DDDTDWT. Fig 15 shows the output of denoised image by 
complex DDDTDWT. 

6. CONCLUSION 

The newly invented extensions of the DWT perform best in 
image processing applications. In this paper, the concept 
focused is wavelet based image denoising methods of an 
image which is corrupted by additive Gaussian noise. The 
techniques used are Dual-Tree Complex DWT and Double-
Density Dual-Tree Complex DWT. These techniques give 
high performance as compared to the existing basic DWT 
methods. As noise increases Double-Density Dual-Tree 
Complex DWT works superior than Dual-Tree Complex 
DWT.  

Table 1: Values of RMS error (with respect to original image) 
with varying T 

Threshold 
value (T) 

RMS error (decibal) w.r.t. original image 

Noisy image
Separable 

DWT 
Real 2D 
DTDWT 

Complex 
2D 

DTDWT 
0 20.191 19.9503 20.0220 20.0345 
5 20.191 16.4779 15.1624 14.4497 

10 20.191 13.5972 11.3788 10.0345 
15 20.191 11.3558 8.9617 7.6580 
20 20.191 9.7770 7.8554 7.1757 
25 20.191 8.8340 7.6604 7.5567 
30 20.191 8.4248 7.9135 8.1244 
35 20.191 8.3970 8.3272 8.6802 
40 20.191 8.5934 8.3330 9.1939 
45 20.191 8.9039 9.2161 9.6655 
50 20.191 9.2579 9.6283 10.1043 
55 20.191 9.6192 10.0174 10.5149 
60 20.191 9.9719 10.3851 10.9007 

 
Table 2: Values of RMS error (with respect to original image) 

with varying T 

Threshold 
value (T) 

RMS error (decibal) w.r.t. original image 

Noisy 
image 

Separable 
DWT 

Real 2D 
DDDTDWT

Complex 
2D 

DDDTDWT
0 20.191 19.9584 19.9584 19.9584 
5 20.191 12.9315 11.9766 14.5116 

10 20.191 9.2452 8.3965 10.5849 
15 20.191 8.5529 8.5469 8.5691 
20 20.191 9.1579 9.6790 8.1437 
25 20.191 10.0760 10.8550 8.5398 
30 20.191 11.0099 11.9270 9.1984 
35 20.191 11.8905 12.8882 9.8878 
40 20.191 12.7014 13.7510 10.5392 
45 20.191 13.4436 14.5325 11.1385 
50 20.191 14.1246 15.2240 11.6884 
55 20.191 14.7509 15.8927 12.1949 
60 20.191 15.3293 16.4870 12.6662 
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Fig. 4: Plot of RMS error versus threshold values for DDDTDWT 

 
Fig. 5: Plot of RMS error versus threshold values for DTDWT 

 

 
Fig. 6: Output of noisy image 

 

 
Fig. 10: Output of denoised image by separable DWT 

  
Fig. 11: Output of denoised image by real DTDWT 

 

 
Fig. 12: Output of denoised image by real DTDWT 
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Fig. 13: Output of noisy image 

 
Fig. 14: output of denoised image by separable DWT 

 
Fig. 15: Output of denoised image by real DDDTDWT 

 

Fig. 16: Output of denoised image by complex DDDTDWT 
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